SPLASH!® milk science update: August 2019 Issue

This month’s issue features mammary cells, antibodies in human milk, and the cow milk metabolite database.

The Fifteen Lives of Mammary Cells

The Fifteen Lives of Mammary Cells

How do mammary cells change and gain the ability to make milk at each birth? Scientists, at present, only have fragmentary information and little detail about the hierarchy of mammary cells contributing to the lactation cycle beginning at each pregnancy. A cellular hierarchy is like a family tree. It shows the relationships between different types of cells i.e., who begat whom. Knowledge of cellular hierarchies in mammary tissue could help answer many difficult questions. Which cells (progenitor cells) give rise to the cells that make milk or cells that form part of the mammary tissue structure supporting lactation? How do mammary epithelial cells cease producing milk after weaning? Which mammary cells develop into breast cancer and why? Recently, a group of investigators produced a massive molecular resource that may help answer these and many other questions relating to mammary tissue function. Importantly, the investigators made the resource available to all scientists to maximize its potential for additional discoveries. Read More...

Comprehensive Cow Milk Metabolite Database Now Online

Comprehensive Cow Milk Metabolite Database Now Online

    Some recipes are meant to be top secret—Colonel Sanders’ fried chicken; Big Mac’s special sauce; your great aunt Ingrid’s sherry cake. But the ingredients in cow milk shouldn’t be private and confidential. The advent of targeted metabolomics approaches, which characterize large numbers of small molecules in milk, offers the opportunity to produce a detailed and comprehensive picture of cow milk’s chemical composition. And yet, many studies employing these new techniques have not publicly reported their findings, or report the components they have found but not their concentrations. Rather than having scientists continuing to re-invent the analytical milk wheel, a team of Canadian researchers has just published a “centralized, comprehensive, and electronically accessible database” of all detectable metabolites in cow milk. We may never know what Colonel Sanders uses to season his fried chicken batter, but the (detectable) chemicals that make up cow milk—all 2,355 of them—are now on the record. Read More...

Antibody Type, Specificity, and Source Influence Their Survival in the Infant Gut

Antibody Type, Specificity, and Source Influence Their Survival in the Infant Gut

Maternal antibodies play an important role in protecting newborns from harmful pathogens. Antibodies known as immunoglobulins (Igs) are transferred from the mother’s placenta into the fetus, where they protect the infant while the infant’s immune system is still developing, Human milk also contains many different Igs, such as IgA, IgM, IgG, and secretory forms of IgA and IgM. Consuming human milk provides additional immune protection to infants and has been shown to reduce the risk of infectious diseases. Read More...

MicroRNAs May Play a Key Role in Heat Stress Responses in Mammary Glands of Lactating Cows

MicroRNAs May Play a Key Role in Heat Stress Responses in Mammary Glands of Lactating Cows

A concern facing dairy farmers as the long, hot days of summer approach is the threat of heat stress in their cows. Experienced at temperatures above 80°F, heat stress affects growth and development as well as milk composition and volume. Heat stress is a major cause of low fertility in dairy cattle. It also increases susceptibility to metabolic disorders, mammary gland pathogens and mastitis. Compared with other livestock, cattle are unable to dissipate their heat load efficiently. Additional heat generated by the fermentation of food in the rumen compounds this problem. Cows’ sweating response is not highly effective, and the animals rely on respiration to cool themselves. Because of their inefficient response, cattle accumulate a heat load during the day that must be dissipated in cooler nighttime temperatures. In extreme weather conditions with overnight temperatures above 70°F, however, this doesn’t happen. Cattle experiencing increasing heat stress will stop feeding and become restless. They will then begin drooling and breathing more rapidly and with increased effort. They will also begin to group together, further exacerbating the problem. If not controlled, severe cases of heat stress will result in death. Economically, decreased milk yield and reproductive losses through hot summer months seriously affect the dairy industry. Increased occurrences of extreme weather conditions caused by ongoing global warming will only worsen these losses. Read More...

Meet our Elite and Premier Sponsors