PhenoFinLait

First overview of french farm systems

C. Dragan, S. Esvan, M. Ferrand, A. Varenne,
F. Faucon-Lahalle and PhénoFinlait consortium
Felicie.faucon@inst-elevage.asso.fr

This program is financially supported by ANR, Apis-Gene, FGE, FranceAgriMer, French Ministry of Agriculture, EU
Summary

1) Context
2) Material and Methods
3) First results
4) What next ?
5) Conclusions
From animal to product

• 1960’s => bull selection on productivity
• 1980’s => + fat percentage and protein percentage
• From the 1990’s to now => + functional traits (mastitis, longevity, fertility…)

Many traits related to animals or production

Absence of traits related to product : milk
Why considering fine milk composition?

- Fine milk composition = fatty acid (FA) and/or individual protein (IP) profiles of milk
- New phenotypes that give precious help for
 - Consumers (nutrition, flavor...)
 AND
 - Farmers (C18:1t10/C18:1t11 ratio as marker of acidosis)
 - Industries (level of protein phosphorylation, FA profile and milk fat texture)
How fine milk composition can be modulated?

- **Feeding management**
 - In comparison to maize silage diet, pasture, conserved grass and/or some concentrates increase milk mono- and poly-unsaturated FA content

- **Genetics**
 - High inter-individual variability and non negligible heritability make possible selection on fine milk composition
 - QTL for fine milk composition detected: DGAT1, SCD1 and β-lactoglobulin.
The french answer: PhenoFinlait

- Many partners with shared interests for these new phenotypes:

 - **CNIEL** (Dairy industries and farmers)
 - **France Génétique Elevage:** (France Livestock Genetics)
 - **UNCEIA, ANIO and CapGène** (about 10 breeding companies)
 - **FCL and CNBL** (Milk recording organizations)
 - **Actilait and regional laboratories**
 - **INRA** (French National Institute for Agricultural Research) (4 labs, 4 exp. Units, 2 dep)
 - **Institut de l’Elevage** (French Livestock Institute) (4 teams, 3 dep)
 - And about 1 500 farms

26 departments
3 species
7 breeds
A French dairy industry R&D program on thin milk composition

Several objectives

- Develop and control methods to analyze fine milk composition
- High scale analysis of milk composition and development of a huge data base
 - Recording fine milk composition (FA and proteins)
 - Recording diet composition and herd management
 - Taking biological samples (blood for genotyping and milk)
- Understand how genetic and feeding strategies impact fine milk composition
- Promote tools (genetics + feeding strategies) for adapting milk composition to consumers demand and health
Summary

1) Context
2) Material and Methods
3) First results
4) What next ?
5) Conclusions
Phenotyping method for FA

GC: milk FA profile

MIR spectra

→ Almost 75 FA and ratio for each species
Improvement of equations accuracy

• By applying selection of variables before PLS regression
• Genetic algorithms already successfully used on IR data (Leardi R. 1998, Gomez-Carracedo 2007)
• Previous study in cow milk with good results (Ferrand, 2009)
Results, precision of FA estimation

⇒ Better estimation for cow and ewe in comparison to goat

⇒ For cow milk, precision of estimation close to Soyeurt et al., 2006
How to deal with spectra differences between analyzers?

- Previous analysis showed spectra differences between analyzers for estimation of milk FA profile.
- Control milks were analyzed frequently on each machine (internal controls).
- We are going to use these internal control for correcting every MIR spectra and FA content estimation.

M. Ferrand (IE), O. Leray (Actilait)
Phenotyping method for proteins

• Difficult to estimate with MIR spectra (many variants)
• Development of a reference analysis method: HPLC-MS
• Creation of reference databases for protein identification
• Analysis of 17,000 samples
• Attempts to link milk protein composition to MIR spectra

P. Martin (INRA)
Summary

1) Context
2) Material and Methods
3) First results
4) What next?
5) Conclusions
780,000 MIR Spectra

Recorded in PhenoFinlait database at 2010/09/01

- **Cows:** 406,556
- **Goats:** 244,884
- **Ewes:** 126,290

![Map of France with data recording distribution](image-url)

- **Legend:**
 - < 5,000
 - 5,000 to 20,000
 - 20,000 to 50,000
 - > 50,000

M. Brochard (IE)
7 100 diets composition records
In PhenoFinlait database at 2010/09/01

• Cows : 5 591
• Goats : 600
• Ewes : 936

M. Brochard (IE)
A French dairy industry R&D program on thin milk composition

Animal physiology and milk FA composition

• Lactating stages: decrease MUFA, increase SFA

S. Esvan, A. Varenne (IE)

Pyrenées Atlantique, raw data

East of France, raw data

http://www.phenofinlait.fr
Animal physiology and milk FA composition

- Parity: decrease UFA, increase SFA

East of France, raw data

S. Esvan (IE)
A French dairy industry R&D program on thin milk composition

Milk FA composition

Winter period

Switch between winter and summer periods

S. Esvan (IE)
French farm systems – Winter time

"Maize" diet (>75% of maize in the ration)

581 farms, 68 lactating cows /farm:
- diets in % of farms of the departement

Montbeliarde 7%
Normande 39%
Holstein 54%

M. Brochard, S. Esvan (IE)
French farm systems – Winter time

“Mixed Maize” diet (55-75% of maize in the ration)

228 farms, 77 lactating cows /farm:

- **diets** in % of farms of the departement

Map showing the distribution of different dairy breeds across the region.

Pie chart showing the distribution of dairy breeds:
- Montbeliarde 15%
- Normande 32%
- Holstein 53%

M. Brochard, S. Esvan (IE)
French farm systems – Winter time

“Mixed Grass” diet (>45% of grass in the ration)

113 farms, 68 lactating cows /farm:
• diets in % of farms of the departement

A French dairy industry R&D program on thin milk composition

M. Brochard, S. Esvan (IE)
A French dairy industry R&D program on thin milk composition

French farm systems – Winter time
“Hay” diet (>90% of hay in the ration)

189 farms, 56 lactating cows /farm:
• diets in % of farms of the department

M. Brochard, S. Esvan (IE)
Genetic parameters – cows

<table>
<thead>
<tr>
<th>Heritabilities</th>
<th>montbéliarde</th>
<th>normande</th>
<th>holstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (%)</td>
<td>0.36</td>
<td>0.36</td>
<td>0.23</td>
</tr>
<tr>
<td>SFA</td>
<td>0.19</td>
<td>0.32</td>
<td>0.18</td>
</tr>
<tr>
<td>MUFA</td>
<td>0.33</td>
<td>0.32</td>
<td>0.20</td>
</tr>
<tr>
<td>PUFA</td>
<td>0.31</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>C14:0</td>
<td>0.33</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>C16:0</td>
<td>0.25</td>
<td>0.31</td>
<td>0.11</td>
</tr>
<tr>
<td>C18:1</td>
<td>0.20</td>
<td>0.33</td>
<td>0.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genetic variation coefficient (%)</th>
<th>montbéliarde</th>
<th>normande</th>
<th>holstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (%)</td>
<td>4.1</td>
<td>5.4</td>
<td>5.7</td>
</tr>
<tr>
<td>SFA</td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>MUFA</td>
<td>1.7</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td>PUFA</td>
<td>3.1</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>C14:0</td>
<td>3.5</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>C16:0</td>
<td>2.7</td>
<td>2.9</td>
<td>2.3</td>
</tr>
<tr>
<td>C18:1</td>
<td>4.0</td>
<td>5.4</td>
<td>7.6</td>
</tr>
</tbody>
</table>

East and west of France, raw data
Summary

1) Context
2) Material and Methods
3) First results
4) What next?
5) Conclusions
What next?

• Milk composition analysis
 – Improve MIR Spectra equations to estimate milk FA profile
 – Work to set equations for FA estimation usable by every milk recording laboratories
 – Analysis of protein composition

• Genotyping of 8000 cows, 3000 ewes and 4000 goats
 – And try to relate markers to milk FA and protein composition

• Have a more precise definition of feeding systems and associate these systems to fine milk composition
Summary

1) Context
2) Material and Methods
3) First results
4) What next?
5) Conclusions
Conclusions

• PhenoFinlait is a huge research program, this year was characterized by:
 – Data collection in the 3 species and 1500 commercial farms
 – First overview of the french farm systems
 – A large diversity of feeding composition

• Many factors have to be taken into account to evaluate fine milk FA profile: lactating stage, parity, feeding strategy, genetic
 ⇒ It is possible to modulate milk FA profile and to select animals on these criteria

• We have to continue the work
 - to perform an analysis method usable by all
 - to valorize these new sets of data
Thanks to every partners of this project

Thank you for your attention!