Preference for Milk and Host-Glycans in *Bifidobacterium infantis*

Daniel A. Garrido
Food Science and Technology
University of California, Davis
Breast milk dictates the composition of the infant microbiota in the first years of life
Carbon Sources in the Breast-Fed Infant Colon

- Human Milk Oligosaccharides
- Mucin glycans
- Intestinal Glycoconjugates

Infant bifidobacteria
Carbon Sources in the Breast-Fed Infant Colon

Human milk oligosaccharides (HMO)

- Lacto-N-biose (type 1 chain)
- N-Acetyl lactosamine (type 2)
- Lacto-N-tetraose (LNT)
- Lacto-N-neotetraose (LNnT)

Epithelial glycoconjugates

Blood group antigens

Essentials of Glycobiology 2nd edition
What features are required for complex oligosaccharide consumption?

1. Transport mechanisms (ABC importers)

2. Glycolytic enzymes

- Fucosidase
- Hexosaminidase
- Sialidase
- Galactosidase

ATP → ADP → ATPase → Family 1 Solute Binding Protein (F1SBP) → Permease → Cytoplasm
Bifidobacterium infantis

- Commonly found in the infant colon
- Archetypical HMO consuming bacteria
- Specialization for carbohydrate metabolism

B. infantis ATCC 15697 HMO Cluster I

<table>
<thead>
<tr>
<th>Sequenced genome</th>
<th>Pfam01547 hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifidobacterium adolescentis ATCC 15703</td>
<td>9</td>
</tr>
<tr>
<td>Bifidobacterium animalis lactis AD011</td>
<td>6</td>
</tr>
<tr>
<td>Bifidobacterium animalis subsp. lactis Bl-04</td>
<td>6</td>
</tr>
<tr>
<td>Bifidobacterium bifidum NCIMB 41171 (Draft)</td>
<td>3</td>
</tr>
<tr>
<td>Bifidobacterium breve DSM 20213 (Draft)</td>
<td>16</td>
</tr>
<tr>
<td>Bifidobacterium catenulatum DSM 16992 (Draft)</td>
<td>11</td>
</tr>
<tr>
<td>Bifidobacterium dentium ATCC 27678</td>
<td>23</td>
</tr>
<tr>
<td>Bifidobacterium longum DJO10A</td>
<td>16</td>
</tr>
<tr>
<td>Bifidobacterium longum NCC2705</td>
<td>11</td>
</tr>
<tr>
<td>Bifidobacterium longum infantis ATCC 15697</td>
<td>20</td>
</tr>
<tr>
<td>Bifidobacterium pseudocatenulatum DSM 20438 (Draft)</td>
<td>15</td>
</tr>
</tbody>
</table>
• F1SBPs might represent a critical adaptation that might indicate the range of complex oligosaccharides *B. infantis* is able to import and consume

• SBP oligosaccharide affinity
 • Mammalian Glycan Array

• Induction by different prebiotics
 (HMO, inulin, FOS, GOS)
Analysis by qPCR and proteomics
Blon2347 (and Blon2344)

Type 2 (Galb1-4GlcNAc) binding proteins
HMO and epithelial glycoconjugates

Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAc
Tri lactosamine
RFU: 27537

Galb1-4GlcNAcb1-3Galb1-4GlcNAc
Di-lactosamine
RFU: 22369

Galb1-4GlcNAcb1-3Galb1-4Glc
Lacto-N-neotetraose
RFU: 18606

GalNAca1-3(Fuca1-2)Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-3Galb1-4GlcNAc
Human colonic mucin glycan
RFU: 14667

Galb1-4(Fuca1-3)GlcNAcb1-4Galb1-4(Fuca1-3)GlcNAc
Difucosyl Di LacNac
RFU: 7559

Galb1-4GlcNAcb1-3(GlcNAcb1-6)Galb1-4GlcNAc
Human colonic mucin glycan
RFU: 10898

Galb1-4GlcNAcb1-3(GlcNAcb1-6)Galb1-4GlcNAc
Branched trilactosamine
RFU: 17959
Concordance in proteomic with expression data

Sole carbon source in *B. infantis* culture

HMO Cluster I F1SBPs
Blon2350-Blon2351-Blon2354

Core subunit in mucin glycans

- **Galb1-3GalNAcb**
- **Galacto-N-biose**
- RFU: 1206

B. bifidum, B. longum:
- One SBP binding LNB/GNB

B. infantis:
- 2 SBPs binding LNB
- 5 SBPs binding GNB
Type 1 chain F1SBPs

Blon0883

- Galb1-3GlcNAc
 - Lacto-N-biose RFU:29986

- Galb1-3GalNAcb
 - Galacto-N-biose RFU:27955

- Fuca1-2Galb1-3GlcNAc
 - Type I blood group H-antigen RFU:14946

- Galb1-3(Fuca1-4)GlcNAc
 - Lewis Le\(^a\) antigen RFU:23132

Blon2177

- Galb1-3GlcNAcb1-3Galb1-4Glc
 - Lacto-N-tetraose RFU:17807

- Galb1-3GlcNAcb1-3Galb1-4GlcNAc
 - Di-LNB RFU:11944

- Iso-Lacto-N-octaose RFU:10883

- Galb1-3GlcNAc
 - Lacto-N-biose RFU:8160

- Galb1-3GalNAcb
 - Galacto-N-biose RFU:24879

• SBP unique to *B. infantis*

• Homologues in other members of the microbiota

• Found in conserved LNB/GNB cluster in several bifidobacteria

BL1638 (B. longum NCC2705):

GNB = LNB

Blon2177 (B. infantis):

GNB >>> LNB
• HMO-binding SBPs are turned on regardless their affinities for type 1 or type 2 chains
Type 1 chain F1SBPs

- Expected HMO binding protein. Catabolic repression? More active import of mucin glycans?
B. infantis growing on HMO
• **Blon_2061**: Candidate for fructan import in *B. infantis*
• A plant-derived oligosaccharide induces expression of SBPs that bind host glycans
Inulin has a long history of consumption by humans
- Prebiotic fermentable by bacteria in distal colon
- Induction of host glycan SBPs could be interpreted as a (vestigial) signal that prepares the bacteria to the encounter of host-derived glycans
SBPs Gene Expression

FOS and GOS induce SBPs involved in their own import.
• *B. infantis* devotes half of its F1SBPs to the import of host-derived glycans.

• Genes involved in HMO import were identified. Several are specific for *B. infantis*.

• F1SBPs affinities match the HMO structures consumed by *B. infantis*. This bacterium has developed strategies for garnering different isomers of HMO.

• HMO is able to induce the gene expression of several SBPs which bind host glycans.

• Inulin, but not FOS or GOS, also increased the expression of proteins that import host glycans.

• Some SBPs binding host glycans are potential candidates for interactions with the host.

• **Understanding of nutritional preferences of the intestinal microbiota will help in the selection of specific probiotics and specific prebiotic formulations.**
• Consortium for Functional Glycomics, Core H

• Mills Lab (Dave Sela, Riccardo Locascio)

• University of California Discovery Grant Program
 • California Dairy Research Foundation
 • USDA NRI-CSREES Award 2008-35200-18776
 • NIH-NICID awards 5R01HD059127 and 1R01HD061923