Safety and Tolerability following Consumption of *Bifidobacterium longum* subspecies *infantis* in exclusively breastfed term infants: IMPRINT Study

Jennifer Smilowitz, PhD
Foods for Health Institute
Department of Food Science & Technology
jensm@ucdavis.edu
http://ffhi.ucdavis.edu/
Disclosures
Benefits of breastfeeding no matter $\$

Infant
- Reductions in child infections
- Reductions malocclusion
- Increases in IQ
- Reductions in overweight and diabetes

Mother
- Protection against breast and ovarian cancers
- Protection against type 2 diabetes
- Improved birth spacing

Overall
- BF universally prevent 823,000 annual deaths in children < 5 years and 20,000 annual deaths from breast cancer

Human milk oligosaccharides

- Highly variable
- 200 species
- Indigestible
- Nourishment
- Intestinal

Bifidobacterium

Nature 468 S5-S7 (23 December 2010)
Garrido et al Microbiology (2013)
Gut microbiome: infants

The diagram shows the changes in the gut microbiome over chronological age (mo) in infants, with population-survey weighted relative abundances. The x-axis represents chronological age in months, ranging from 0 to 24. The y-axis represents the relative abundance of different bacterial species, with categories for maximum relative abundance and below detectable abundance.

Key species and their abundances over time include:
- Staphylococcus sp.
- Streptococcus sp.
- Bifidobacterium sp. (putative breve)
- Bifidobacterium longum
- Lactobacillus ruminis
- Dorea longicatena
- Dorea formicigenerans
- Bifidobacterium sp. (putative catelunatum)
- Faecalibacterium prausnitzii
- Ruminococcus species

The diagram illustrates the transition of the gut microbiome from a milk-oriented microbiota to a more complex composition as infants grow older.
Effect of HMOs on *B. infantis*

B. infantis grows on HMOs

LoCascio et al., JAFC 2007
B. infantis HMO gene cluster

- HMOs are bound by SBP lipoproteins proximal to permeases
- ATP hydrolysis prompts transport of oligosaccharides across membrane
- Intracellular glycolytic enzymes deconstruct oligosaccharide

Sela PNAS 2008
Effect of HMOs on *B. infantis*

- Enhance binding to intestinal cells
- Induce expression of intestinal tight junction proteins
- Induce expression anti-inflammatory cytokines (IL-10)
- SCFA production
Developed Countries: infant gut dysbiosis

<table>
<thead>
<tr>
<th>Country (Cohort Type)</th>
<th>Average % of Infant Fecal Microbiota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh (Vitamin A supplement)</td>
<td>90% Actinobacteria, 10% Firmicutes</td>
</tr>
<tr>
<td>Gambia (Random)</td>
<td>80% Bacteroidetes, 20% Firmicutes</td>
</tr>
<tr>
<td>Armenia (Random)</td>
<td>95% Firmicutes, 5% Proteobacteria</td>
</tr>
<tr>
<td>Switzerland (Random, values estimated from graph)</td>
<td>70% Firmicutes, 30% Other</td>
</tr>
<tr>
<td>Canada (Random, but at 4 months of age)</td>
<td>85% Firmicutes, 15% Proteobacteria</td>
</tr>
<tr>
<td>Georgia (Random)</td>
<td>90% Firmicutes, 10% Others</td>
</tr>
<tr>
<td>Sweden (Healthy)</td>
<td>95% Firmicutes, 5% Proteobacteria</td>
</tr>
<tr>
<td>Italy (Colicky infants)</td>
<td>75% Firmicutes, 25% Proteobacteria</td>
</tr>
<tr>
<td>Davis, CA, USA (Non-secretor mother enriched cohort)</td>
<td>80% Firmicutes, 20% Proteobacteria</td>
</tr>
<tr>
<td>Ireland (Healthy, some formula feeding)</td>
<td>90% Actinobacteria, 10% Bacteroidetes</td>
</tr>
</tbody>
</table>

Graph showing distribution of microbial types with labels for anti-inflammatory and pro-inflammatory categories.
C-sections
- Food allergy/atopy, allergic rhinitis, asthma, hospitalization for asthma OR = 1.18-1.32 (0-31 y)³
- Wheezing and food allergy OR = 1.2-1.64 (2 y)⁴

Antibiotic exposure in infancy
- Use in first 2 y dose-dependently increase asthma, eczema, hay fever by age 7.5 y (asthma: OR=1.1, 1.5, 1.8, 2.8)⁵
- Use in first 1 y increase asthma OR= 2.0 (1-18 y)⁶

Formula feeding
- Exclusive BF first 3 months of life protective against asthma OR= 0.70 (1-8 y)⁶
- Exclusive BF first 3 months of life protective against allergic rhinitis OR= 0.74 (1-4 y)⁶
Infant Microbiota and Probiotic Intake (IMPRINT) Study
Objective

Determine if exogenous delivery of an activated *Bifidobacterium longum* subsp. *infantis* for 21 days to exclusively breastfed infants is tolerable and safe and increases intestinal *B. infantis* during and 1 month post-supplementation.
Study Design

Inclusion
- Healthy mothers, 21-45 yr, Yolo/Sacramento
- Healthy term infants >37 wk;
- Intention to exclusively breastfeed for 3 mos.

Exclusion
- Plan to administer probiotics to infants
- Infants on antibiotics after 72 h of age
- Separate discharge for more than 24 hours
Study Design

- Parallel randomized control trial, UC Davis IRB
- Randomized lactation support (LS, n = 34) or *B. infantis* + lactation support (BiLS, n = 34)
 - C-section matched for time of ruptured membranes: (≤ 6 h or >6 h)
- Primary outcome variable: fecal *Bifidobacterium* (fold-difference 1.3, α=0.05, β=0.9) and GI tolerability (n = 30)
- *B. infantis* dose provided in one 625 mg sachet 1×10^10 CFU + lactose (Day 7-Day 27)
- Dispensed by UC Davis IDS

Lewis et al. Microbiome, 2015
Hoy-Schulz et al., BMC Complementary and Alternative Medicine, 2016
Safety and Tolerability Data

- **Fecal *Bifidobacterium***
 - RT PCR, Evolve Biosystems Inc.

- **Daily feeding logs**
 - # BF, formula, liquids, solids vitamins, supplements, probiotics, *B. infantis*

- **Daily GI & health logs**
 - # Stools, consistency modified Amsterdam scale, blood in stool, body temperature, frequency spit-ups (<5, 5-10, >10), flatulence (never, sometimes, often, very often), intake of antibiotics, medications
 - Ratings of GI-related symptoms using a continuous scale 0 (“not noticeable”) to 10 (“most severe”): 1) general irritability (“how irritable was your baby?”), 2) upset (“if your baby vomited or spit up, how upset was he/she after?”), 3) and discomfort (“rate your baby’s discomfort in passing stool or gas”)

- **Weekly and Biweekly Questionnaire**
 - Episodes of colic, eczema diagnosis # of sick doctor visits; illnesses

- **End of Study Questionnaire**

- **Compliance: D22 and D33**

Penders et al. EMS Microbiology Letters 2005
Bekkali et al., Journal of Pediatrics, 2009
Statistics

- Intent to treat post Day 7
- Data binned:
 - Daily logs: baseline (D1-6), intervention (D7-27), post-intervention (D28-61)
 - Questions: baseline (D7), intervention (D15, 22, 33), post-intervention (D61)
 - # D reported/total # D OR # infants/total # infants
- IBM SPSS Statistics version 24, GraphPad PRISM v.7. Statistical significance was considered as $P<0.05$.
- Normality: histograms and q-q plots, Shapiro-Wilk test and Levene’s statistic. Log10 transformed.
- Categorical data: Pearson Chi-square Test for Independence, Continuous data: Mann-Whitney U Test, repeated measures ANOVA; ANCOVA with parity covariate, logistic regression for group differences in stool consistency, flatulence and spitting-up.
Results: Enrollment

- **Enrollment**
 - Assessed for eligibility (n = 108)
 - Excluded (n = 28)
 - Not meeting Final inclusion criteria (n = 27)
 - Refused to participate (n = 1)
 - Other reasons (n = 0)
 - Non-randomized (n = 15)
 - Randomized (n = 65)

- **Allocation**
 - Allocated to BiLS (n = 41)
 - Received allocated intervention (n = 34)
 - Did not receive allocated intervention (n = 7) (screen-failed post-randomization or discontinued before intervention period initiated)
 - Allocated to LS (n = 39)
 - Received allocated intervention (n = 34)
 - Did not receive allocated intervention (n = 5)

- **Follow up**
 - Lost to follow up (n = 0)
 - Discontinued intervention (n = 0)

- **Analysis**
 - Analyzed (n = 34)
 - Excluded from analysis (n = 0)

- **Allocation**
 - Allocated to BiLS (n = 41)
 - Received allocated intervention (n = 34)
 - Did not receive allocated intervention (n = 7) (screen-failed post-randomization or discontinued before intervention period initiated)
 - Allocated to LS (n = 39)
 - Received allocated intervention (n = 34)
 - Did not receive allocated intervention (n = 5)

- **Follow up**
 - Lost to follow up (n = 0)
 - Discontinued intervention (n = 0)

- **Analysis**
 - Analyzed (n = 34)
 - Excluded from analysis (n = 0)
Results: Maternal Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>BiLS (n = 34)</th>
<th>Mean</th>
<th>SD</th>
<th>LS (n = 34)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at Enrollment (yr)</td>
<td></td>
<td>33.3</td>
<td>4.5</td>
<td>31.4</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Pre-Pregnancy BMI<sup>a</sup></td>
<td></td>
<td>25.6</td>
<td>3.6</td>
<td>23.8</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Pregnancy Weight Gain (kg)</td>
<td></td>
<td>15.0</td>
<td>5.1</td>
<td>15.2</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Hours in Labor (hr)</td>
<td></td>
<td>12.9</td>
<td>12.8</td>
<td>17.8</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>Ruptured Membranes Prior to Birth (hr)</td>
<td></td>
<td>10.1</td>
<td>17.2</td>
<td>10.8</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>Number of Live Births<sup>b</sup></td>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td>1.4</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Parity, % (n)<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primiparous</td>
<td></td>
<td>41%</td>
<td>(14)</td>
<td>76%</td>
<td>(26)</td>
<td></td>
</tr>
<tr>
<td>Multiparous</td>
<td></td>
<td>59%</td>
<td>(20)</td>
<td>24%</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>Mode of Delivery, % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal</td>
<td></td>
<td>68%</td>
<td>(23)</td>
<td>71%</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>C-section</td>
<td></td>
<td>32%</td>
<td>(11)</td>
<td>29%</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>Antibiotic Use Labor, % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>44%</td>
<td>(15)</td>
<td>29%</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>56%</td>
<td>(19)</td>
<td>71%</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>Labor Complications Reported, % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>26%</td>
<td>(9)</td>
<td>26%</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>74%</td>
<td>(25)</td>
<td>74%</td>
<td>(25)</td>
<td></td>
</tr>
</tbody>
</table>
Results: Infant Characteristics

<table>
<thead>
<tr>
<th></th>
<th>BiLS (n = 34)</th>
<th></th>
<th>LS (n = 34)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Gestational Age (wk)</td>
<td>39.5</td>
<td>1.2</td>
<td>39.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Birth Weight (g)</td>
<td>3457.8</td>
<td>369.5</td>
<td>3555.6</td>
<td>624.1</td>
</tr>
<tr>
<td>Infant Birth Length (cm)</td>
<td>50.5</td>
<td>2.0</td>
<td>50.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Infant Gender, % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>62%</td>
<td>(21)</td>
<td>44%</td>
<td>(15)</td>
</tr>
<tr>
<td>Female</td>
<td>38%</td>
<td>(13)</td>
<td>56%</td>
<td>(19)</td>
</tr>
<tr>
<td>Oral or IV Antibiotics 72 hr, % (n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0%</td>
<td>(0)</td>
<td>3%</td>
<td>(1)</td>
</tr>
<tr>
<td>No</td>
<td>100%</td>
<td>(34)</td>
<td>97%</td>
<td>(33)</td>
</tr>
</tbody>
</table>
Results: Infant Fecal *Bifidobacterium*

![Graph showing the comparison of Log_{10} CFU Bifidobacterium per gram stool between LS Day 10 and BiLS Day 10. The graph indicates a significant difference (P<0.0001).]
Results: Infant Weight
Results: Infant Feeding

Breast milk intake (#/d)

Baseline | Intervention | Post-intervention
Results: Infant Stooling

Infant Stools (#/d)

Baseline Intervention Post-intervention

(P<0.0005)
Results: Stool Consistency

- **Baseline**: Infant Stool Consistency (#d/total d)
 - Watery
 - Soft
 - Formed
 - Hard

- **Intervention**: Infant Stool Consistency (#d/total d)
 - Watery
 - Soft
 - Formed
 - Hard

- **Post-intervention**: Infant Stool Consistency (#d/total d)
 - Watery
 - Soft
 - Formed
 - Hard

Change in Infant Stool Consistency (%)

- **Intervention - Baseline**
 - Watery
 - Soft
 - Formed
 - Hard

- **Post-intervention - Intervention**
 - Watery
 - Soft

(*P<0.05)
Results: Infant Spit-ups and Flatulence

- Infant Spit-Ups (d/total d)
 - Baseline
 - Intervention
 - Post-intervention

- Infant Flatulence (d/total d)
 - Baseline
 - Intervention
 - Post-intervention
Results: Infant Tolerability

Infant Irritability

Baseline | Intervention | Post-intervention

Infant Upset

Baseline | Intervention | Post-intervention

Infant Discomfort

Baseline | Intervention | Post-intervention
Results: Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>BiLS (n = 34)</th>
<th>LS (n = 33)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Intervention</td>
</tr>
<tr>
<td>Temperature Above 100.3F, (# d)</td>
<td>0.005</td>
<td>0.029</td>
</tr>
<tr>
<td>Blood in Stool, (# d)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Antibiotic Use, (# d)</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Meds for Gas, (# d)</td>
<td>0.015</td>
<td>0.086</td>
</tr>
<tr>
<td>Jaundice diagnosis, % (n)</td>
<td>26.5% (9)</td>
<td>5.9% (2)</td>
</tr>
<tr>
<td>Colic, % (n)</td>
<td>0% (0)</td>
<td>0% (0)</td>
</tr>
<tr>
<td>Eczema diagnosis, % (n)</td>
<td>0% (0)</td>
<td>0% (0)</td>
</tr>
<tr>
<td>Illnesses, % (# reports)</td>
<td>2.9% (1)</td>
<td>11.8% (4)</td>
</tr>
<tr>
<td>Sick Doctor Visits, % (# reports)</td>
<td>2.9% (1)</td>
<td>15% (5)</td>
</tr>
</tbody>
</table>
Summary

• *B. infantis* EVC001 supplementation was found to be well-tolerated and did not result in a difference in the number or type of reported adverse events compared to non-supplemented infants.

• *B. infantis* EVC001 supplementation for 21 consecutive days mixed in breast milk resulted in fewer stools per day but more often softer than watery stools compared with non-supplemented infants possibly resembling a more mature gut than un-supplemented infants.
Acknowledgements:

UC Davis
Mark Underwood, MD
Kathleen Angkustsiri, MD
Bruce German, PhD
David Mills, PhD
Zac Lewis, PhD
Debbie Albert, BSN, PhD, IBCLC
Peter Trovitch, Pharm D

UC Davis Investigational Drug Services

Sutter Health
Anette Fineberg, MD
Blanche Skubic, CNM

IMPRINT Team
Melissa Breck
Chelsea Cook
Jackelyn Moya
Heather Conway, IBCLC
Marie Farver, IBCLC
Shirley German IBCLC
Lonna Hampton, IBCLC
QUESTIONS?

THANK YOU!